综合
7*24 快讯
AI科普
合作
全部
英雄令
项目方
开发者
产品方
投资者
2025年12月,何恺明团队发布新成果Improved MeanFlow (iMF),解决原始MeanFlow在训练稳定性、指导灵活性和架构效率上的三大问题。通过重构预测函数为标准回归问题,引入无分类器指导(CFG)和上下文内条件作用,模型性能大幅提升。在ImageNet 256×256基准测试中,iMF-XL/2模型单步生成FID达1.72,较原始版本提升50%,媲美多步扩散模型。论文一作为CMU博士生耿正阳,共一为清华姚班大二学生Yiyang Lu,后者现于MIT跟随何恺明研究计算机视觉。其他合作者包括Adobe研究员Zongze Wu、Eli Shechtman及CMU机器学习系主任Zico Kolter。该研究部分完成于MIT,何恺明教授署名尾作。
原文链接
2025年11月26日,NeurIPS 2025揭晓最佳论文奖和时间检验奖。阿里Qwen团队的门控注意力研究获最佳论文奖,聚焦大语言模型性能提升;何恺明团队2015年提出的Faster R-CNN获时间检验奖,突破目标检测速度瓶颈。本届共4篇最佳论文,3篇为华人一作,涵盖大模型多样性、强化学习深度扩展及扩散模型泛化机制等前沿领域。此外,Best Paper Runner-up有3篇,涉及在线学习理论与神经缩放定律等方向。Faster R-CNN通过区域提议网络(RPN)实现高效检测,在多项竞赛中表现优异,其创新设计影响深远。
原文链接
正文:2025年11月,何恺明团队发布新论文,提出扩散模型可能被用错的观点。研究指出,当前主流扩散模型在训练时多预测噪声或速度场,而非直接生成干净图像,这与模型本质相悖。基于流形假设,团队认为神经网络更适合学习将噪声投影回低维流形的干净数据,而非拟合高维噪声。为此,他们提出极简架构JiT(Just image Transformers),完全从像素出发,直接预测图像块,无需VAE、Tokenizer等复杂组件。实验表明,JiT在高维空间下表现稳健,在ImageNet 256×256和512×512生成任务中分别取得1.82和1.78的SOTA级FID分数。论文一作为黎天鸿,清华姚班本科毕业,现为何恺明组博士后。
原文链接
何恺明MIT两名新弟子曝光:首次有女生入组,另一位是FNO发明者,均为华人
AI大牛何恺明的团队近日新增两名成员——博士生胡珂雅和博士后李宗宜,均为华人学者。至此,何恺明任教MIT以来招募的6名学生中,5名为中国面孔。
胡珂雅:上交学霸直博MIT
胡珂雅本科毕业于上海交通大学ACM班,高中就读于福建...
原文链接
2025年10月,LSTM之父Jürgen Schmidhuber再次引发争议,称其学生Sepp Hochreiter早在1991年就提出循环残差连接解决梯度消失问题,认为残差学习的奠基人应归功于Hochreiter而非何恺明团队。Schmidhuber指出,1997年提出的LSTM和1999年的vanilla LSTM均基于此思想,而2015年的Highway网络和ResNet是这一理念的延续。他还对其他深度学习模型如AlexNet、GAN和Transformer的起源提出类似质疑,但这些观点未获普遍认可。网友对此评价称‘从Hochreiter到ResNet,光芒随时间递归延续’,但也有人调侃‘Schmidhuber is all you need’。
原文链接
近日,MIT终身教授何恺明正式加盟谷歌DeepMind,担任杰出科学家一职。此前,他于2023年获得MIT终身教职,仅隔一年便选择以兼职形式加入谷歌。何恺明是计算机视觉领域的顶尖学者,曾提出ResNet等经典模型,总引用量超71万次。他与谷歌DeepMind早有合作,包括今年2月发表的《Fractal Generative Models》论文,以及去年合作的Fluid项目。此次加入DeepMind基础研究组,标志着其学术与产业界双重身份的延续。
原文链接
标题:何恺明MIT开门弟子名单:奥赛双料金牌得主、清华姚班学霸在列
作者:奇月
来源:凹非寺
公众号:量子位(QbitAI)
入职MIT电气工程和计算机科学系的何恺明,首波门下弟子现已曝光,其中三位是华人:白行建、邓明扬、黎天鸿。邓明扬是知名的IMO、IOI双料奥赛金牌得主。
他们近期合作了一篇论文...
原文链接
何恺明继入职MIT后首次独立带队,带领包括奥赛双料金牌得主邓明扬在内的团队,提出全新方法让自回归模型告别矢量量化,采用连续值生成图像。他们借鉴扩散模型思想,提出了Diffusion Loss,消除了离散tokenizer的需求。论文展示了这一创新在AR、MAR模型上的优越性能,小模型达到1.98 FID分数,大模型甚至达到1.55 SOTA。此外,团队还在量子物理学方向应用强化学习,优化动态异构量子资源调度,成绩提升3倍以上。何恺明的多领域探索显示其在CV和AI4S的活跃身影。
原文链接
加载更多
暂无内容