标题:1万tokens成大模型长文本“智商”分水岭
正文:
当上下文长度扩展至1万tokens,主流大模型的性能集体“失智”,且下降并非均匀,而是在某些节点出现断崖式下跌。例如,Claude Sonnet 4在1000tokens后准确率从90%降至60%,而GPT-4.1和Gemini 2.5 Flash则表现为下降后放缓再下降。最终,所有模型在1万tokens时准确率仅剩50%。这意味着,大模型处理长文本时的可靠性会因输入长度增加而显著下降,且不同模型的“失智”节点各异。
这是Chroma团队通过升级版“大海捞针”(NIAH)测试得出的结论。他们评估了包括GPT-4.1、Claude 4、Gemini 2.5和Qwen3等18个主流大模型,发现随着输入长度增加,模型性能普遍下降。研究还首次揭示,这种下降受语义特征、干扰信息及文本结构等因素影响,且不同模型对这些因素的敏感度存在差异。
实验设计了四项对照任务,核心原则是保持任务复杂度不变,仅调整输入长度。结果显示:
1. 输入长度是性能下降的核心变量,无论任务简单与否,长文本处理能力均受影响;
2. 针-问题语义相似度低或干扰信息多会加剧性能衰减;
3. 连贯文本比打乱结构更易导致性能下降;
4. 不同模型表现差异明显,但整体稳定性均较差。
例如,在针-问题相似度实验中,低相似度组在1万tokens时准确率仅为40%-60%,远低于高相似度组的60%-80%。干扰信息实验显示,加入多个干扰项后,模型准确率比基线低30%-50%。此外,连贯文本结构使部分模型准确率降至30%-40%,而打乱结构则维持在50%-60%。
尽管大模型的上下文窗口不断扩展,但其性能并非均匀一致。研究建议用户通过明确指令、保存上下文等方式缓解长文本处理中的缺陷。
Chroma团队专注于开发开源AI应用数据库,旨在简化LLM应用构建,并计划推出免费技术预览。代码已开源,感兴趣者可复现研究结果。
— 完 —
.png)

-
2025-09-07 21:49:50
-
2025-09-07 20:50:36
-
2025-09-07 20:49:25