
综合
7*24 快讯
AI科普
合作
全部
英雄令
项目方
开发者
产品方
投资者
近日,由新加坡国立大学、得克萨斯大学奥斯汀分校等机构的研究人员联合开发的「拖拽式大语言模型」(DnD)引发关注。该模型基于提示词快速生成任务专属参数,无需微调即可适应不同场景,效率比传统方法提升12000倍。DnD通过轻量级文本编码器与级联超卷积解码器,在数秒内生成LoRA权重矩阵,展现出卓越的零样本泛化能力。实验表明,其在数学、代码及多模态任务中性能优于现有方法,且仅需无标签提示词即可完成适配。这项技术为大模型快速专业化提供了高效解决方案,有望推动AI应用落地。
原文链接
加载更多

暂无内容