
综合
7*24 快讯
AI科普
合作
全部
英雄令
项目方
开发者
产品方
投资者
6月2日,英伟达联合MIT和香港大学推出Fast-dLLM框架,大幅提升扩散模型推理速度。扩散模型因词元依赖关系易破坏及计算成本高等问题,在实际应用中逊于自回归模型。Fast-dLLM通过块状近似KV缓存和置信度感知并行解码策略解决上述问题。KV缓存将序列分块预计算存储,DualCache版本进一步优化;置信度解码选择性解码高置信度词元。Fast-dLLM在GSM8K数据集上实现27.6倍加速,准确率达76.0%,并在MATH、HumanEval和MBPP测试中分别实现6.5倍至7.8倍加速,准确率仅下降1-2个百分点。这项研究使扩散模型具备与自回归模型竞争的能力,为未来广泛应用奠定基础。
原文链接
加载更多

暂无内容