阿里开源长文本深度思考模型!渐进式强化学习破解长文本训练难题
推理大模型开启新方向,阿里推出长文本深度思考模型QwenLong-L1,位列HuggingFace今日热门论文第二。其32B参数版本在多项测试中表现优异,超越OpenAI-o3-mini、Qwen3-235B-A22B等,与Claude-3.7-Sonnet-Thinking持平。
论文详细展示了金融文档推理案例,传统模型易被无关信息误导,而QwenLong-L1通过回溯和验证机制过滤干扰信息,整合关键数据。以“将优先票据发行成本与第一年利息支出合并计算总资本成本”为例,基础模型DeepSeek-R1-Distill-Qwen-14B因不相关时间信息误算利息,额外SFT版本虽改进但仍无法给出答案。相比之下,QwenLong-L1-14B通过自我反思和验证快速排除干扰,得出正确答案。
QwenLong-L1如何实现这一突破?团队提出渐进式上下文扩展,分两阶段训练。首先是预热监督微调,利用5.3K高质量三元组数据让模型掌握长文本理解与推理能力。接着是课程引导的分阶段强化学习,从短文本逐步过渡到长文本,同时引入难度感知回溯采样机制确保模型处理困难案例的能力。
强化学习训练中采用混合奖励函数,结合规则验证与LLM-as-a-Judge,兼顾准确性与灵活性。在多个基准测试中,QwenLong-L1-14B平均提升4.1分,32B版本达70.7分,超越多款竞品。团队还评估了Test-time Scaling性能,QwenLong-L1-14B表现优于DeepSeek-R1和OpenAI-o1-preview。
实验显示,SFT可带来显著提升,但RL在长文本上的效果有限,而在短文本上效果显著。团队认为,SFT经济实用,而RL是达到最佳性能的关键。通过分析推理行为发现,强化学习能有效增强信息定位、子目标设定、回溯和验证能力,而SFT仅停留在表面模式匹配。
.png)

-
2025-07-18 23:46:25
-
2025-07-18 22:47:06
-
2025-07-18 22:46:21